Researchers identify potential approaches to modify the vaginal microbiome

The female genital tract is naturally colonized by mixed communities of bacteria, known as the vaginal microbiome. When these communities are dominated by species such as Lactobacillus crispatus, they provide important protective functions in genital health. But overgrowth of certain other bacterial species is linked to a condition known as bacterial vaginosis (BV). BV affects nearly 30% of women around the world, carrying increased risk for sexually transmitted diseases, HIV, and — in pregnant individuals — premature birth. Unfortunately, current antibiotic-based treatments for BV are poorly effective with high rates of recurrence.

One reason for BV recurrence may be that treatment often causes the microbiome to become dominated by a species called Lactobacillus iners instead of by L. crispatus. In a paper published this week in Nature Microbiology, researchers at the Ragon Institute of MGH, MIT and Harvard and colleagues show that L. iners has unique nutritional requirements that distinguish it from L. crispatus, potentially allowing it to be targeted using novel therapeutic strategies.

L. iners is the most abundant and common vaginal bacterial species worldwide, but it is poorly studied because scientists have had difficulty growing it in lab under conditions used to culture species like L. crispatus,” explains Seth Bloom, MD, PhD, an Instructor in the Infectious Diseases division at Massachusetts General Hospital and Harvard Medical School who was lead author on the study. Bloom and colleagues found that adding the amino acid cysteine to standard Lactobacillus culture media allowed them to grow L. iners strains from samples collected from U.S. and South African women.

Surprisingly, when the researchers analyzed a novel collection of more than 1,200 vaginal Lactobacillus genomes from more than 300 women across four continents, they found that none of the species were able to make their own cysteine. This finding was confirmed in experiments conducted with Ben Woolston, PhD, and Emily Balskus, PhD, at the Harvard Department of Chemistry and Chemical Biology. The team therefore hypothesized that all vaginal Lactobacillus species require external cysteine sources. They measured cysteine concentrations in vaginal fluid samples from South African women with high rates of BV, finding that higher vaginal cysteine levels were linked to Lactobacillus-dominant microbiomes while BV was associated with low cysteine levels.

“The results suggested all vaginal lactobacilli acquire cysteine from their environment, but L. iners‘s ability to do so was more limited than other species,” says Bloom. “Indeed, when we looked at the genomes, we saw that all species except L. iners had multiple systems that are predicted to transport cysteine or its oxidized form, cystine.” The team therefore tested effects of compounds known to inhibit cystine uptake, finding that cystine uptake inhibitors selectively blocked growth of L. iners in the lab, but not other Lactobacillus species.

“These findings were exciting because they suggested a way to improve BV treatment by blocking L. iners growth in favor of more health-associated species like L. crispatus,” explains co-author Nomfuneko Mafunda, an MPH candidate at the Harvard T.H. Chan School of Public Health who contributed to this study while working as a technician at the Ragon Institute. To test this idea, Bloom and Mafunda constructed mixed bacterial communities including L. inersL. crispatus, and various BV-associated bacteria in the laboratory. They then treated the communities with an antibiotic commonly used for BV therapy, with a cystine uptake inhibitor, or a combination of the two. Their results showed that the combination allowed L. crispatus to outcompete other species more effectively than the antibiotic alone.

The researchers believe these results suggest a path to better therapies. “One reason it’s been difficult to develop effective BV treatments is that we haven’t had the correct tools to study the vaginal microbiome in the lab,” says Doug Kwon, MD, PhD, Ragon core member and senior author on the study. “Here, developing the right tool to cultivate L. iners in the lab immediately translated into an important finding that will hopefully lead to improved therapies for BV.”

This post has been published from a wired agency with no changes to the text and headline.

Medically Speaking Team

Share
Published by
Medically Speaking Team

Recent Posts

The Hidden Costs of Excessive Screen Time: How It Impacts Your Child’s Behavior and What You Can Do About It

Explore the profound effects of excessive screen time on your child’s behavior and development. Discover…

11 hours ago

Transform Your Heart Health: Simple Everyday Diet and Lifestyle Changes for a Happier, Stronger Heart

Discover how simple daily changes in your diet and lifestyle can significantly improve your heart…

11 hours ago

“Unraveling the Truth: Do Brain Tumours Only Affect Older Adults? Debunking Myths and Shedding Light on a Complex Condition”

This article explores the common misconception that brain tumours primarily affect older adults, revealing the…

11 hours ago

“Revolutionary Breakthrough: First-Ever Ovarian Cancer Vaccine Set to Transform Women’s Health and Combat a Silent Killer”

The first-ever ovarian cancer vaccine is poised to change the landscape of women's health by…

11 hours ago

“Battling the Monsoon Surge: Essential Strategies to Prevent Dengue and Chikungunya Infections in Delhi”

As dengue and chikungunya cases rise in Delhi during the monsoon season, understanding prevention strategies…

11 hours ago

NATURAL vs CHEMICAL SKINCARE: THE ESSENTIAL GUIDE TO CHOOSING WHAT’S BEST FOR YOUR SKIN

Skincare is a significant concern for women (and increasingly, men), with the quest for perfect,…

11 hours ago