Researchers develop low-cost sensor that detects heart attack in less than 30 minutes

Researchers from the University of Notre Dame and the University of Florida have developed a sensor that could diagnose a heart attack in less than 30 minutes, according to a study published in Lab on a Chip.

Currently, it takes health care professionals hours to diagnose a heart attack. Initial results from an echocardiogram can quickly show indications of heart disease, but to confirm a patient is having a heart attack, a blood sample and analysis is required. Those results can take up to eight hours.

“The current methods used to diagnose a heart attack are not only time intensive, but they also have to be applied within a certain window of time to get accurate results,” said Pinar Zorlutuna, the Sheehan Family Collegiate Professor of Engineering at Notre Dame and lead author of the paper. “Because our sensor targets a combination of miRNA, it can quickly diagnose more than just heart attacks without the timeline limitation.”

By targeting three distinct types of microRNA or miRNA, the newly developed sensor can distinguish between an acute heart attack and a reperfusion — the restoration of blood flow, or reperfusion injury, and requires less blood than traditional diagnostic methods to do so. The ability to differentiate between someone with inadequate blood supply to an organ and someone with a reperfusion injury is an unmet, clinical need that this sensor addresses.

“The technology developed for this sensor showcases the advantage of using miRNA compared to protein-based biomarkers, the traditional diagnostic target,” said Hsueh-Chia Chang, the Bayer Professor of Chemical and Biomolecular Engineering at Notre Dame and co-author of the paper. “Additionally, the portability and cost efficiency of this device demonstrates the potential for it to improve how heart attacks and related issues are diagnosed in clinical settings and in developing countries.”

A patent application has been filed for the sensor and the researchers are working with Notre Dame’s IDEA Center to potentially establish a startup company that would manufacture the device.

Bioengineers Chang and Zorlutuna are both affiliated with Notre Dame’s Institute for Precision Health. Additional co-authors from Notre Dame are Stuart Ryan Blood, Cameron DeShetler, Bradley Ellis, Xiang Ren, George Ronan and Satyajyoti Senapati. Co-authors from the University of Florida are David Anderson, Eileen Handberg, Keith March and Carl Pepine. The study was funded by the National Institutes of Health National Heart, Lung, and Blood Institute.

Source:University of Notre Dame

Medically Speaking Team

Recent Posts

ANTIBIOTIC MISUSE IN INDIA: HOW IT’S MAKING INFECTION TREATMENT MORE CHALLENGING

Antibiotic use has surged globally, leading to a rise in antibiotic resistance, especially concerning in…

9 hours ago

CHILD DIES FROM CHOKING ON CANDY: HOW TO SAFEGUARD AGAINST CHOKING HAZARDS IN YOUNG CHILDREN

Choking is a leading cause of injury and death in young children, particularly those under…

11 hours ago

Video: How Hard Water Leads to Hair Fall and Expert Tips to Combat It

Hard Water (Khara Pani) Leading To Hair Fall Hard water is rich in minerals and…

12 hours ago

“How High Blood Pressure During Pregnancy Is Rising: What Every Expectant Mother Should Know”

Discover how the rise in high blood pressure during pregnancy is impacting maternal and fetal…

12 hours ago

“Revitalize Your Weight Loss Journey: 6 Powerful Homemade Drinks to Naturally Melt Away Fat!”

"Discover the transformative power of six delicious homemade drinks that can help you naturally melt…

13 hours ago

“Revitalize Your Weight Loss Journey: 8 Powerful Fat-Flushing Drinks to Boost Your Results!”

"Transform your weight loss routine with these eight delicious fat-flushing drinks that not only hydrate…

13 hours ago