Categories: Uncategorized

Early childhood enrichment may help reverse effects of lead poisoning, study suggests

According to a recent study from Thomas Jefferson University, lead poisoning affects over 3,500 genes in the hippocampus, an area of the brain critical for learning and memory.

The study also underscores the potential importance of early childhood education in decreasing the repercussions of lead poisoning by showing that providing animals with stimulating environments early in life can reverse the majority of these genetic changes. The study’s findings were published in the journal ‘Scientific Reports.’

“Children who live in housing stock built before 1978, the year in which lead was banned as an ingredient in paint, are at high risk of being exposed to lead from lead dust or chipping and peeling lead-containing paint in their homes,” said a senior author Jay Schneider, PhD, professor of Pathology, Anatomy and Cell Biology at Thomas Jefferson University.

“Recent estimates suggest that there are at least a half million children in the U.S. with blood lead levels at or above amounts that can adversely affect cognitive function. Our work demonstrates that by providing an enriched early life environment, the adverse effects of lead on the brain may be minimized or potentially reversed, emphasizing how important early childhood interventions may be.”

Together with lead author Garima Singh, PhD, a research assistant professor in the Department of Pathology, Anatomy and Cell Biology and colleagues, the authors looked at rats that were exposed to lead from birth to the time of weaning, at 21 days of age. “Our experiments aimed to replicate conditions of human lead exposure,” said Dr Singh. “21 days of age for rats is the equivalent to an age of about 2-3 years in humans, which is commonly when lead exposure occurs. That is because crawlers and toddlers are likely to put many things in their mouths including paint chips or toys covered in dust from deteriorating lead paint.”

For 21 days, the lead-exposed animals were separated into two different housing conditions: ones that were either enriched or ones that lacked stimulation. The so-called enriched cages had more social activity, with a total of 6 rats, together with chew toys and various things to climb on and burrow through that were changed twice every week for novelty. The non-enriched cages were smaller, only held 3 animals and did not contain any additional stimulation. “We now know that stimulating social environments are as important for rodents as they are for human children, in terms of cognitive and behavioural health and with effects on physical health as well,” said Dr Singh.

The researchers looked at changes in the expression of genes from the part of the brain involved in memory – the hippocampal region. They found that the expression levels of over 3,500 genes were affected by the lead exposure, either abnormally churning out more or less of their gene products. “These data show for the first time that at a genome-wide level, a large number of hippocampal genes involved in various biological processes and functions are affected by lead exposure and further modified by an enriched environment,” said Dr Schneider. In rats exposed to lead, the genes affected were among those involved in memory and nerve signalling pathways, and also those involved in brain development.\

However, approximately 80 per cent of the gene expression changes induced by the lead exposure were reversed in the group of animals that lived in the stimulating environment until day 55, which is roughly equivalent to adolescence in humans. Additionally, the animals living in the non-enriched environment had memory deficits while the animals living in the enriched environment did not.

“We know that there is no safe level of lead exposure for children,” said Dr Schneider. “Lead can damage the brain and derail normal brain development. However, our work suggests that it may be possible to mitigate the widespread adverse effects of lead on the young brain by providing adequate access to stimulating, interesting environments and activities in early childhood and perhaps longer. Unfortunately, these kinds of resources are often not available to the population most at risk for lead poisoning, that is, children who are growing up in impoverished or low socioeconomic environments.”

Although more study is needed in this area, Drs. Schneider and Singh concur that the relevance of early intervention programmes with environmental enrichment cannot be emphasised.

Medically Speaking

Recent Posts

IS BREAD CONSUMPTION LINKED TO CANCER RISK? STUDY REVEALS KEY FINDNGS

Bread is one of the most consumed foods worldwide, present in nearly every culture and…

2 hours ago

IS BREAD CONSUMPTION LINKED TO CANCER RISK? STUDY REVEALS KEY FINDINGS Is Bread Consumption Linked to Cancer Risk? Study Reveals Key Findings

Bread is one of the most consumed foods worldwide, present in nearly every culture and…

2 hours ago

“Aging and Malnutrition: The Hidden Risks of Nutritional Deficiency in the Elderly”

Nutritional deficiency poses a significant threat to the health and well-being of the elderly, leading…

5 hours ago

“Traveling with Diabetes? Essential Dos and Don’ts for a Stress-Free Journey”

Scared to Travel Because of Diabetes? Follow These Dos and Don’ts for a Hassle-Free Trip…

5 hours ago

Transform Your Anger: Watch This Insightful Video on Managing Anger Issues for Better Health!

Anger issues:Being angry is harmful for health. Sometimes in anger we take such steps which…

6 hours ago

“5 Vital Functions Your Body Can’t Perform Without Vitamin D”

5 Things Your Body Can't Do Without Vitamin D: The Importance of This Essential Nutrient…

6 hours ago